Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Viruses ; 13(12)2021 12 11.
Article in English | MEDLINE | ID: covidwho-1572660

ABSTRACT

Patients with COVID-19 generally raise antibodies against SARS-CoV-2 following infection, and the antibody level is positively correlated to the severity of disease. Whether the viral antibodies exacerbate COVID-19 through antibody-dependent enhancement (ADE) is still not fully understood. Here, we conducted in vitro assessment of whether convalescent serum enhanced SARS-CoV-2 infection or induced excessive immune responses in immune cells. Our data revealed that SARS-CoV-2 infection of primary B cells, macrophages and monocytes, which express variable levels of FcγR, could be enhanced by convalescent serum from COVID-19 patients. We also determined the factors associated with ADE, and found which showed a time-dependent but not viral-dose dependent manner. Furthermore, the ADE effect is not associated with the neutralizing titer or RBD antibody level when testing serum samples collected from different patients. However, it is higher in a medium level than low or high dilutions in a given sample that showed ADE effect, which is similar to dengue. Finally, we demonstrated more viral genes or dysregulated host immune gene expression under ADE conditions compared to the no-serum infection group. Collectively, our study provides insight into the understanding of an association of high viral antibody titer and severe lung pathology in severe patients with COVID-19.


Subject(s)
Antibody-Dependent Enhancement/immunology , Leukocytes/virology , SARS-CoV-2/pathogenicity , COVID-19/immunology , Cells, Cultured , Gene Expression Profiling , Humans , Immune Sera/immunology , Leukocytes/metabolism , Receptors, IgG/metabolism , Virus Replication/immunology
2.
Cell Mol Immunol ; 19(2): 150-157, 2022 02.
Article in English | MEDLINE | ID: covidwho-1467097

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing pandemic that poses a great threat to human health worldwide. As the humoral immune response plays essential roles in disease occurrence and development, understanding the dynamics and characteristics of virus-specific humoral immunity in SARS-CoV-2-infected patients is of great importance for controlling this disease. In this review, we summarize the characteristics of the humoral immune response after SARS-CoV-2 infection and further emphasize the potential applications and therapeutic prospects of SARS-CoV-2-specific humoral immunity and the critical role of this immunity in vaccine development. Notably, serological antibody testing based on the humoral immune response can guide public health measures and control strategies; however, it is not recommended for population surveys in areas with very low prevalence. Existing evidence suggests that asymptomatic individuals have a weaker immune response to SARS-CoV-2 infection, whereas SARS-CoV-2-infected children have a more effective humoral immune response than adults. The correlations between antibody (especially neutralizing antibody) titers and protection against SARS-CoV-2 reinfection should be further examined. In addition, the emergence of cross-reactions among different coronavirus antigens in the development of screening technology and the risk of antibody-dependent enhancement related to SARS-CoV-2 vaccination should be given further attention.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Immunity, Humoral , Pandemics/prevention & control , SARS-CoV-2/immunology , Vaccination/methods , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , COVID-19/epidemiology , COVID-19/virology , Cross Reactions , Humans , Spike Glycoprotein, Coronavirus/immunology
4.
Med Princ Pract ; 30(5): 422-429, 2021.
Article in English | MEDLINE | ID: covidwho-1197290

ABSTRACT

Coronavirus disease 2019 (COVID-19), a pandemic infection with profound effects on human society, has challenged our ability to control viral infections. Although at the beginning of the COVID-19 outbreak, the epidemic seemed controllable in Southern Iran, the disease presented a critical pattern as of May 2020. After a few months of the emergence of COVID-19, its severity and mortality increased dramatically. It has been proposed that antibodies produced during previous exposure to local circulating human coronaviruses or possibly severe acute respiratory syndrome coronavirus 2 might contribute to the development of more severe and lethal presentations of COVID-19 possibly by triggering antibody-dependent enhancement. The binding of virions complexed with antibodies to Fcγ receptors on the target cells initiates receptor-mediated signaling events, leading to enhanced expression of inflammatory cytokines and suppression of intracellular antiviral responses at the transcriptome level, followed by endocytosis of the virus and subsequent activation of immune cells. The activated immune cells might accumulate in the lung and promote cytokine storm and lymphopenia. Furthermore, the formation of immune complexes can promote complement activation and subsequent tissue damage. Although there are currently no clinical data to support this hypothesis, a better understanding of these immunopathologic phenomena and their relation to the disease course and severity might give insights into the development of the most efficient prophylactic and therapeutic approaches. This review demonstrates the critical pattern of COVID-19 in Southern Iran and highlights the possible interplay of factors leading to this condition.


Subject(s)
Antibody-Dependent Enhancement/immunology , COVID-19/immunology , Pneumonia, Viral/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Cytokine Release Syndrome/immunology , Humans , Iran , Lymphopenia/immunology , Pandemics , Pneumonia, Viral/virology , Virion/immunology
5.
mSphere ; 6(1)2021 02 24.
Article in English | MEDLINE | ID: covidwho-1102156

ABSTRACT

The majority of infections with SARS-CoV-2 are asymptomatic or mild without the necessity of hospitalization. It is of importance to reveal if these patients develop an antibody response against SARS-CoV-2 and to define which antibodies confer virus neutralization. We conducted a comprehensive serological survey of 49 patients with a mild course of disease and quantified neutralizing antibody responses against a clinical SARS-CoV-2 isolate employing human cells as targets. Four patients (8%), even though symptomatic, did not develop antibodies against SARS-CoV-2, and two other patients (4%) were positive in only one of the six serological assays employed. For the remaining 88%, antibody response against the S protein correlated with serum neutralization whereas antibodies against the nucleocapsid were poor predictors of virus neutralization. None of the sera enhanced infection of human cells with SARS-CoV-2 at any dilution, arguing against antibody-dependent enhancement of infection in our system. Regarding neutralization, only six patients (12%) could be classified as high neutralizers. Furthermore, sera from several individuals with fairly high antibody levels had only poor neutralizing activity. In addition, employing a novel serological Western blot system to characterize antibody responses against seasonal coronaviruses, we found that antibodies against the seasonal coronavirus 229E might contribute to SARS-CoV-2 neutralization. Altogether, we show that there is a wide breadth of antibody responses against SARS-CoV-2 in patients that differentially correlate with virus neutralization. This highlights the difficulty to define reliable surrogate markers for immunity against SARS-CoV-2.IMPORTANCE There is strong interest in the nature of the neutralizing antibody response against SARS-CoV-2 in infected individuals. For vaccine development, it is especially important which antibodies confer protection against SARS-CoV-2, if there is a phenomenon called antibody-dependent enhancement (ADE) of infection, and if there is cross-protection by antibodies directed against seasonal coronaviruses. We addressed these questions and found in accordance with other studies that neutralization is mediated mainly by antibodies directed against the spike protein of SARS-CoV-2 in general and the receptor binding site in particular. In our test system, utilizing human cells for infection experiments, we did not detect ADE. However, using a novel diagnostic test we found that antibodies against the coronavirus 229E might be involved in cross-protection to SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , Coronavirus Infections/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/immunology , Antibody-Dependent Enhancement/immunology , Binding Sites/immunology , Female , Hospitalization , Humans , Male , Neutralization Tests/methods , Nucleocapsid/immunology , Seasons , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology , Surveys and Questionnaires , Vaccines/immunology
6.
Math Biosci ; 331: 108499, 2021 01.
Article in English | MEDLINE | ID: covidwho-899298

ABSTRACT

Motivated by historical and present clinical observations, we discuss the possible unfavorable evolution of the immunity (similar to documented antibody-dependent enhancement scenarios) after a first infection with COVID-19. More precisely we ask the question of how the epidemic outcomes are affected if the initial infection does not provide immunity but rather sensitization to future challenges. We first provide background comparison with the 2003 SARS epidemic. Then we use a compartmental epidemic model structured by immunity level that we fit to available data; using several scenarios of the fragilization dynamics, we derive quantitative insights into the additional expected numbers of severe cases and deaths.


Subject(s)
Antibody-Dependent Enhancement/immunology , COVID-19/epidemiology , COVID-19/immunology , Models, Biological , Reinfection/immunology , Humans
7.
Mol Cell Biochem ; 476(2): 675-687, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-871519

ABSTRACT

The recent exposure of novel coronavirus strain, severe acute respiratory syndrome (SARS-CoV-2) has spread to different countries at an alarming rate. Faster transmission rate and genetic modifications have provoked scientists to search for an immediate solution. With an increasing death rate, it becomes important to throw some light on the life cycle of the virus and its associated pathogenesis in the form of lung inflammation through cytokine storm (CS) production. This paper highlights the different stages of viral-mediated inflammatory responses in the host respiratory system. Previously, known anti-inflammatory drugs and therapeutic strategies that might show potential in controlling the CS of Coronavirus disease-2019 (COVID-19) is also mentioned in this study. Our critical analysis provides insights into the inflammation cycle induced in the lungs by early virus replication, downregulation and shedding of angiotensin-converting enzyme 2 (ACE2), and in the CS production. Identification of suitable targets within the inflammatory pathways for devising the therapeutic strategies useful in controlling the prognosis of COVID-19 finds a special mention in this article. However, antibody-dependent enhancement is the key aspect to consider before testing any drug/compound for therapeutic purposes. Our in-depth analysis would provide similarities and differences between the inflammatory responses induced by SARS-CoV and SARS-CoV-2, providing an excellent avenue to further look at how earlier outbreaks of coronaviruses were controlled and where new steps are required?


Subject(s)
COVID-19 Drug Treatment , Cytokine Release Syndrome/drug therapy , Inflammation/drug therapy , Lung/pathology , Antibodies/immunology , Antibodies/therapeutic use , Antibody-Dependent Enhancement/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Humans , Inflammation/pathology , Inflammation/virology , Lung/metabolism , Lung/virology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Virus Replication/drug effects
8.
Front Immunol ; 11: 2130, 2020.
Article in English | MEDLINE | ID: covidwho-782001

ABSTRACT

In the last decades, a number of infectious viruses have emerged from wildlife or re-emerged, generating serious threats to the global health and to the economy worldwide. Ebola and Marburg hemorrhagic fevers, Lassa fever, Dengue fever, Yellow fever, West Nile fever, Zika, and Chikungunya vector-borne diseases, Swine flu, Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the recent Coronavirus disease 2019 (COVID-19) are examples of zoonoses that have spread throughout the globe with such a significant impact on public health that the scientific community has been called for a rapid intervention in preventing and treating emerging infections. Vaccination is probably the most effective tool in helping the immune system to activate protective responses against pathogens, reducing morbidity and mortality, as proven by historical records. Under health emergency conditions, new and alternative approaches in vaccine design and development are imperative for a rapid and massive vaccination coverage, to manage a disease outbreak and curtail the epidemic spread. This review gives an update on the current vaccination strategies for some of the emerging/re-emerging viruses, and discusses challenges and hurdles to overcome for developing efficacious vaccines against future pathogens.


Subject(s)
Betacoronavirus/immunology , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/virology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Vaccination , Viral Vaccines/immunology , Animals , Antibody-Dependent Enhancement/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Coronavirus Infections/virology , Cross Reactions/immunology , Humans , Immunization, Passive , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Vaccines, Attenuated/immunology , Vaccines, DNA/immunology , Vaccines, Inactivated/immunology , Vaccines, Subunit/immunology , COVID-19 Serotherapy
9.
Rev Med Virol ; 31(2): e2161, 2021 03.
Article in English | MEDLINE | ID: covidwho-777660

ABSTRACT

The coronavirus disease 2019 (Covid-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an international public health crisis with devastating effects. In particular, this pandemic has further exacerbated the burden in tropical and subtropical regions of the world, where dengue fever, caused by dengue virus (DENV), is already endemic to the population. The similar clinical manifestations shared by Covid-19 and dengue fever have raised concerns, especially in dengue-endemic countries with limited resources, leading to diagnostic challenges. In addition, cross-reactivity of the immune responses in these infections is an emerging concern, as pre-existing DENV-antibodies might potentially affect Covid-19 through antibody-dependent enhancement. In this review article, we aimed to raise the issue of Covid-19 and dengue fever misdiagnosis, not only in a clinical setting but also with regards to cross-reactivity between SARS-CoV-2 and DENV antibodies. We also have discussed the potential consequences of overlapping immunological cascades between dengue and Covid-19 on disease severity and vaccine development.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Dengue/epidemiology , Dengue/immunology , Animals , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Asia/epidemiology , COVID-19/virology , Coinfection/epidemiology , Coinfection/immunology , Coinfection/virology , Dengue/virology , Dengue Virus/immunology , Dengue Virus/pathogenicity , Humans , Pandemics/prevention & control , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
10.
Nat Microbiol ; 5(10): 1185-1191, 2020 10.
Article in English | MEDLINE | ID: covidwho-752497

ABSTRACT

Antibody-based drugs and vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being expedited through preclinical and clinical development. Data from the study of SARS-CoV and other respiratory viruses suggest that anti-SARS-CoV-2 antibodies could exacerbate COVID-19 through antibody-dependent enhancement (ADE). Previous respiratory syncytial virus and dengue virus vaccine studies revealed human clinical safety risks related to ADE, resulting in failed vaccine trials. Here, we describe key ADE mechanisms and discuss mitigation strategies for SARS-CoV-2 vaccines and therapies in development. We also outline recently published data to evaluate the risks and opportunities for antibody-based protection against SARS-CoV-2.


Subject(s)
Antibody-Dependent Enhancement , Betacoronavirus , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Viral Vaccines/adverse effects , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Humans , Immunization, Passive/adverse effects , In Vitro Techniques , Models, Immunological , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiratory Tract Diseases/etiology , Respiratory Tract Diseases/immunology , Risk Factors , SARS-CoV-2 , Safety , Viral Vaccines/immunology , COVID-19 Drug Treatment , COVID-19 Serotherapy
11.
Pediatr Allergy Immunol ; 32(1): 17-22, 2021 01.
Article in English | MEDLINE | ID: covidwho-748746

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) during the COVID-19 pandemic raised a global alert from the Centers for Disease Control and Prevention's Health Alert Network. The main manifestations of MIS-C (also known as pediatric MIS (PMIS)) in the setting of a severe inflammatory state include fever, diarrhea, shock, and variable presence of rash, conjunctivitis, extremity edema, and mucous membrane changes. In some cases, these symptoms progressed to multi-organ failure. The low percentage of children with asymptomatic cases compared with mild illness and moderate illness could be correlated with the rare cases of MIS-C. One potential explanation for the progression to severe MIS-C disease despite the presence of readily detectable anti-SARS-CoV-2 antibodies could be due to the potential role of antibody-dependent enhancement (ADE). We reason that the incidence of the ADE phenomenon whereby the pathogen-specific antibodies can promote pathology should be considered in vaccine development against SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , Systemic Inflammatory Response Syndrome/epidemiology , Adolescent , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , COVID-19/immunology , Child , Child, Preschool , Conjunctivitis/epidemiology , Diarrhea/epidemiology , Exanthema/epidemiology , Humans , Infant , Macrophage Activation/immunology , Pandemics , SARS-CoV-2/immunology , Severity of Illness Index , Systemic Inflammatory Response Syndrome/immunology , Young Adult
12.
J Allergy Clin Immunol Pract ; 8(10): 3251-3258, 2020.
Article in English | MEDLINE | ID: covidwho-731806

ABSTRACT

There is a striking age-related disparity in the prevalence and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced coronavirus disease 2019 infections, which might be explained by age-dependent immunological mechanisms. These include age-related physiological differences in immunological responses, cross-neutralizing antibodies, and differences in levels and binding affinity of angiotensin-converting enzyme 2, the SARS-CoV-2 target receptor; antibody-dependent enhancement in adults manifesting with an overexuberant systemic inflammation in response to infection; and the increased likelihood of comorbidities in adults and the elderly. Emerging immunological phenomena such as Pediatric Multi-System Inflammatory Disorder Temporally associated with SARS-CoV-2 or Multisystem Inflammatory Syndrome in Children are now being observed, though the underlying mechanisms are still unclear. Understanding the mechanisms through which pediatric patients are protected from severe novel coronaviruses infections will provide critical clues to the pathophysiology of coronavirus disease 2019 infection and inform future therapeutic and prophylactic interventions. Asymptomatic carriage in children may have major public health implications, which will have an impact on social and health care policies on screening and isolation practices, school reopening, and safe distancing requirements in the community.


Subject(s)
Age Factors , Antibody-Dependent Enhancement/immunology , Betacoronavirus/immunology , Broadly Neutralizing Antibodies/immunology , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Immunosenescence/immunology , Pneumonia, Viral/immunology , Systemic Inflammatory Response Syndrome/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2 , Asymptomatic Infections , B-Lymphocytes/immunology , COVID-19 , Child , Child, Preschool , Comorbidity , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Susceptibility , Humans , Infant , Inflammation/immunology , Middle Aged , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Policy Making , Renin-Angiotensin System/immunology , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Young Adult
13.
Hum Vaccin Immunother ; 16(12): 3055-3060, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-730557

ABSTRACT

Coronavirus disease-2019 (COVID-19) pandemic has become a global threat and death tolls are increasing worldwide. The SARS-CoV-2 though shares similarities with SARS-CoV and MERS-CoV, immunopathology of the novel virus is not understood properly. Previous reports from SARS and MERS-CoV documents that preexisting, non-neutralizing or poorly neutralizing antibodies developed as a result of vaccine or infection enhance subsequent infection, a phenomenon called as antibody-dependent enhancement (ADE). Since immunotherapy has been implicated for COVID-19 treatment and vaccine is under development, due consideration has to be provided on ADE to prevent untoward reactions. ADE mitigation strategies like the development of vaccine or immunotherapeutics targeting receptor binding motif can be designed to minimize ADE of SARS-CoV-2 since full-length protein-based approach can lead to ADE as reported in MERS-CoV. The present mini-review aims to address the phenomenon of ADE of SARS-CoV-2 through the lessons learned from SARS-CoV and MERS-CoV and ways to mitigate them so as to develop better vaccines and immunotherapeutics against SARS-CoV-2.


Subject(s)
Antibody-Dependent Enhancement/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Drug Development/trends , Immunotherapy/trends , SARS-CoV-2/immunology , Animals , Antibody-Dependent Enhancement/drug effects , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Drug Development/methods , Humans , Immunotherapy/methods , SARS-CoV-2/pathogenicity , Virulence/drug effects , Virulence/immunology , COVID-19 Drug Treatment
14.
Cytokine ; 136: 155256, 2020 12.
Article in English | MEDLINE | ID: covidwho-722276

ABSTRACT

The COVID-19 pandemic has rapidly spread around the world with significant morbidity and mortality in a subset of patients including the elderly. The poorer outcomes are associated with 'cytokine storm-like' immune responses, otherwise referred to as 'hyperinflammation'. While most of the infected individuals show minimal or no symptoms and recover spontaneously, a small proportion of the patients exhibit severe symptoms characterized by extreme dyspnea and low tissue oxygen levels, with extensive damage to the lungs referred to as acute respiratory distress symptom (ARDS). The consensus is that the hyperinflammatory response of the host is akin to the cytokine storm observed during sepsis and is the major cause of death. Uncertainties remain on the factors that lead to hyperinflammatory response in some but not all individuals. Hyperinflammation is a common feature in different viral infections such as dengue where existing low-titer antibodies to the virus enhances the infection in immune cells through a process called antibody-dependent enhancement or ADE. ADE has been reported following vaccination or secondary infections with other corona, Ebola and dengue virus. Detailed analysis has shown that antibodies to any viral epitope can induce ADE when present in sub-optimal titers or is of low affinity. In this review we will discuss ADE in the context of dengue and coronavirus infections including Covid-19.


Subject(s)
Antibody-Dependent Enhancement/immunology , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Feline Infectious Peritonitis/immunology , Inflammation/pathology , Pandemics/veterinary , Pneumonia, Viral/immunology , Pneumonia, Viral/veterinary , Severe Dengue/immunology , Animals , COVID-19 , Cats , Cytokines/metabolism
15.
Hum Vaccin Immunother ; 16(11): 2604-2608, 2020 11 01.
Article in English | MEDLINE | ID: covidwho-670047

ABSTRACT

The pandemic outbreak of COVID-19, caused by coronavirus SARS-CoV-2, created an unprecedented challenge to global public health system and biomedical community. Vaccination is an effective way to prevent viral infection, stop its transmission, and develop herd immunity. Rapid progress and advances have been made to date in the development of COVID-19 vaccines. Currently, more than 115 vaccine candidates have been developed from different technology platforms with several of them in clinical trials. Most of those vaccine candidates are developed based on the experience with other coronaviruses with an aim to induce neutralizing antibodies against the viral spike protein or its different receptor binding domains. Here, we discuss the promise, potential scientific challenges, and future directions for the development of a safe and effective COVID-19 vaccine. We also emphasize the importance of a better understanding of the infection pathogenesis and host defense mechanisms against SARS-CoV-2 infection.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibody-Dependent Enhancement/immunology , COVID-19/pathology , Humans , Immunity, Herd , Vaccination , Viral Load/immunology
16.
Nature ; 584(7821): 353-363, 2020 08.
Article in English | MEDLINE | ID: covidwho-643609

ABSTRACT

Antibody-dependent enhancement (ADE) of disease is a general concern for the development of vaccines and antibody therapies because the mechanisms that underlie antibody protection against any virus have a theoretical potential to amplify the infection or trigger harmful immunopathology. This possibility requires careful consideration at this critical point in the pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we review observations relevant to the risks of ADE of disease, and their potential implications for SARS-CoV-2 infection. At present, there are no known clinical findings, immunological assays or biomarkers that can differentiate any severe viral infection from immune-enhanced disease, whether by measuring antibodies, T cells or intrinsic host responses. In vitro systems and animal models do not predict the risk of ADE of disease, in part because protective and potentially detrimental antibody-mediated mechanisms are the same and designing animal models depends on understanding how antiviral host responses may become harmful in humans. The implications of our lack of knowledge are twofold. First, comprehensive studies are urgently needed to define clinical correlates of protective immunity against SARS-CoV-2. Second, because ADE of disease cannot be reliably predicted after either vaccination or treatment with antibodies-regardless of what virus is the causative agent-it will be essential to depend on careful analysis of safety in humans as immune interventions for COVID-19 move forward.


Subject(s)
Antibodies, Viral/adverse effects , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Animals , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Dengue Virus/immunology , Disease Models, Animal , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Macaca mulatta , Mice , Middle East Respiratory Syndrome Coronavirus/immunology , Orthomyxoviridae/immunology , Pandemics , Rats , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Viral Vaccines/adverse effects , Viral Vaccines/immunology
17.
Nat Commun ; 11(1): 3523, 2020 07 09.
Article in English | MEDLINE | ID: covidwho-640262

ABSTRACT

The spread of the SARS-CoV-2 into a global pandemic within a few months of onset motivates the development of a rapidly scalable vaccine. Here, we present a self-amplifying RNA encoding the SARS-CoV-2 spike protein encapsulated within a lipid nanoparticle (LNP) as a vaccine. We observe remarkably high and dose-dependent SARS-CoV-2 specific antibody titers in mouse sera, as well as robust neutralization of both a pseudo-virus and wild-type virus. Upon further characterization we find that the neutralization is proportional to the quantity of specific IgG and of higher magnitude than recovered COVID-19 patients. saRNA LNP immunizations induce a Th1-biased response in mice, and there is no antibody-dependent enhancement (ADE) observed. Finally, we observe high cellular responses, as characterized by IFN-γ production, upon re-stimulation with SARS-CoV-2 peptides. These data provide insight into the vaccine design and evaluation of immunogenicity to enable rapid translation to the clinic.


Subject(s)
Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Nanoparticles/chemistry , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/metabolism , Antibody-Dependent Enhancement/immunology , Betacoronavirus/genetics , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/immunology , Disease Models, Animal , Humans , Immunity, Cellular , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , RNA, Viral/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology , Viral Vaccines/chemistry
18.
Front Immunol ; 11: 1441, 2020.
Article in English | MEDLINE | ID: covidwho-625168

ABSTRACT

The current COVID-19 pandemic began in December 2019 in Wuhan (China) and rapidly extended to become a global sanitary and economic emergency. Its etiological agent is the coronavirus SARS-CoV-2. COVID-19 presents a wide spectrum of clinical manifestations, which ranges from an asymptomatic infection to a severe pneumonia accompanied by multisystemic failure that can lead to a patient's death. The immune response to SARS-CoV-2 is known to involve all the components of the immune system that together appear responsible for viral elimination and recovery from the infection. Nonetheless, such immune responses are implicated in the disease's progression to a more severe and lethal process. This review describes the general aspects of both COVID-19 and its etiological agent SARS-CoV-2, stressing the similarities with other severe coronavirus infections, such as SARS and MERS, but more importantly, pointing toward the evidence supporting the hypothesis that the clinical spectrum of COVID-19 is a consequence of the corresponding variable spectrum of the immune responses to the virus. The critical point where progression of the disease ensues appears to center on loss of the immune regulation between protective and altered responses due to exacerbation of the inflammatory components. Finally, it appears possible to delineate certain major challenges deserving of exhaustive investigation to further understand COVID-19 immunopathogenesis, thus helping to design more effective diagnostic, therapeutic, and prophylactic strategies.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Age Factors , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Betacoronavirus/classification , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/diagnosis , Cytokines/blood , Humans , Immunoglobulin A, Secretory/immunology , Inflammation/pathology , Macrophages/immunology , Pandemics , Pneumonia, Viral/diagnosis , SARS-CoV-2 , T-Lymphocytes/immunology
19.
Front Immunol ; 11: 1120, 2020.
Article in English | MEDLINE | ID: covidwho-615480

ABSTRACT

Human coronavirus (HCoV) is one of the most common causes of respiratory tract infections throughout the world. Two phenomena observed so far in the development of the SARS-CoV-2 pandemic deserve further attention. First, the relative absence of clinical signs of infections in children, second, the early appearance of IgG in certain patients. From the point of view of immune system physiology, such an early rise of specific IgG is expected in secondary immune responses when memory to a cross-reactive antigen is present, usually from an earlier infection with a coronavirus. It is actually typical for the immune system to respond, to what it already knows, a phenomenon that has been observed in many infections with closely related viruses and has been termed "original antigenic sin." The question then arises whether such cross-reactive antibodies are protective or not against the new virus. The worst scenario would be when such cross-reactive memory antibodies to related coronaviruses would not only be non-protective but even enhance infection and the clinical course. Such a phenomenon of antibody dependent enhancement (ADE) has already been described in several viral infections. Thus, the development of IgG against SARS-CoV-2 in the course of COVID-19 might not be a simple sign of viral clearance and developing protection against the virus. On the contrary, due to cross-reaction to related coronavirus strains from earlier infections, in certain patients IgG might enhance clinical progression due to ADE. The patient's viral history of coronavirus infection might be crucial to the development of the current infection with SARS-CoV-2. Furthermore, it poses a note of caution when treating COVID-19 patients with convalescent sera.


Subject(s)
Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Betacoronavirus/immunology , Cross Protection/immunology , Cross Reactions/immunology , Antibodies, Neutralizing/immunology , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Humans , Immunoglobulin G/immunology , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL